Scientists from Edinburgh University have succeeded in regenerating a living organ for the first time.
The team from the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, managed to rebuild the thymus - an organ in the body located next to the heart that produces important immune cells.
They reactivated a natural mechanism that shuts down with age to rejuvenate the thymus in very old mice. After treatment, the regenerated organ had a similar structure to that found in a young mouse.
It is hoped the advance could pave the way for new therapies for people with damaged immune systems and genetic conditions that affect thymus development.
The function of the thymus was also restored and the mice began making more white blood cells called T cells, which are important for fighting off infection. However, it is not yet clear whether the immune system of the mice was improved.
Clare Blackburn, professor of tissue stem cell biology, MRC Centre for Regenerative Medicine, said: “Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system.
“However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”
The researchers targeted a protein produced by cells of the thymus - called FOXN1 - which helps to control how important genes are switched on. By increasing levels of FOXN1, the team instructed stem cell-like cells to rebuild the organ.
The thymus deteriorates with age, which is why older people are often more susceptible to infections such as flu.
The discovery could also offer hope to patients with DiGeorge syndrome, a genetic condition that causes the thymus to not develop properly, according to the researchers.
Dr Rob Buckle, head of regenerative medicine, Medical Research Council, added: “One of the key goals in regenerative medicine is harnessing the body’s own repair mechanisms and manipulating these in a controlled way to treat disease.
“This interesting study suggests that organ regeneration in a mammal can be directed by manipulation of a single protein, which is likely to have broad implications for other areas of regenerative biology.”
The study is published in the journal Development.